Wednesday, October 04, 2006

A Possible Solution for the Problem of Time in Quantum Cosmology

By Stuart Kauffman and Lee Smolin, here. Abstract:
We argue that in classical and quantum theories of gravity the configuration space and Hilbert space may not be constructible through any finite procedure. If this is the case then the "problem of time" in quantum cosmology may be a pseudoproblem, because the argument that time disappears from the theory depends on constructions that cannot be realized by any finite beings that live in the universe. We propose an alternative formulation of quantum cosmological theories in which it is only necessary to predict the amplitudes for any given state to evolve to a finite number of possible successor states. The space of accessible states of the system is then constructed as the universe evolves from any initial state. In this kind of formulation of quantum cosmology time and causality are built in at the fundamental level. An example of such a theory is the recent path integral formulation of quantum gravity of Markopoulou and Smolin, but there are a wide class of theories of this type.

Excerpt:
The argument that time is not a fundamental aspect of the world goes like this. In classical mechanics one begins with a space of configurations C of a system S. Usually the system S is assumed to be a subsystem of the universe. In this case there is a clock outside the system, which is carried by some inertial observer. This clock is used to label the trajectory of the system in the configuration space C. The classical trajectories are then extrema of some action principle.

Were it not for the external clock, one could already say that time has disappeared, as each trajectory exists all at once as a curve g on C. Once the trajectory is chosen, the whole history of the system is determined. In this sense there is nothing in the description that corresponds to what we are used to thinking of as a flow or progression of time. Indeed, just as the whole of any one trajectory exists when any point and velocity are specified, the whole set of trajectories may be said to exist as well, as a timeless set of possibilities.

Time is in fact represented in the description, but it is not in any sense a time that is associated with the system itself. Instead, the t in ordinary classical mechanics refers to a clock carried by an inertial observer, which is not part of the dynamical system being modeled. This external clock is represented in the configuration space description as a special parameterization of each trajectory, according to which the equations of motion are satisfied. Thus, it may be said that there is no sense in which time as something physical is represented in classical mechanics, instead the problem is postponed, as what is represented is time as marked by a clock that exists outside of the physical system which is modeled by the trajectories in the configuration space C.

0 Comments:

Post a Comment

<< Home